28 research outputs found

    What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    Get PDF
    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility

    Sun-Earth Connections: How the Sun Knocks Out My Cell Phone from 150 Million Kilometers Away

    Get PDF
    Large solar particle events (SPE) threaten many elements of critical infrastructure. A 2013 study by Lloyds of London and Atmospheric and Environmental Research recently found that if a worst-case solar event like the 1859 Carrington Event struck our planet now, it could result on 0.6−0.6-2.36 trillion in damages to the economy. In March 2014, researchers Y. D. Liu et al. revealed that just such an event had narrowly missed Earth in July 2012. The event was observed by the STEREO A spacecraft. In this presentation, we examine how the sun can pack such a punch from 150 million km away, the threats such solar particle events pose, their mechanisms and the efforts NASA and other space agencies are carrying out to understand and mitigate such risks

    Statistical Methods for Large Flight Lots and Ultra-high Reliability Applications

    Get PDF
    We present statistical techniques for evaluating random and systematic errors for use in flight performance predictions for large flight lots and ultra-high reliability applications

    Statistical Modeling for Radiation Hardness Assurance

    Get PDF
    We cover the models and statistics associated with single event effects (and total ionizing dose), why we need them, and how to use them: What models are used, what errors exist in real test data, and what the model allows us to say about the DUT will be discussed. In addition, how to use other sources of data such as historical, heritage, and similar part and how to apply experience, physics, and expert opinion to the analysis will be covered. Also included will be concepts of Bayesian statistics, data fitting, and bounding rates

    Radiation Single Event Effects (SEE) Impact on Complex Avionics Architecture Reliability

    Get PDF
    The NASA Engineering and Safety Center (NESC) has an urgent need to understand how system-level reliability of an avionics architecture is compromised when portions of the architecture are temporarily unavailable due to single event effects (SEE). The proposed activity parametrically evaluated these SEE impacts on system reliability based on mission duration, upset rate and recovery times for a representative redundant architecture. The key stakeholders for this study are NASA programs and projects that expect to use avionics architectures with electrical, electronic and electromechanical (EEE) parts susceptible to SEE when exposed to the mission expected radiation environment

    Guidelines for Verification Strategies to Minimize RISK Based on Mission Environment, -Application and -Lifetime (MEAL)

    Get PDF
    There is a trend of compromising verification testing to address the cost and schedule constraints, which poses a high-risk posture for programs/projects. Current and emerging aerospace scientific and/or human exploration programs continue to pose new technological challenges. These technological challenges combined with finite budgets and truncated schedules are forcing designers, scientists, engineers, and managers to push technologies to their physical limits. In addition, budget and schedule pressures challenge how those technologies/missions are verified. A clear understanding of the different verification processes is needed to ensure the proper verification of the technology within the mission (i.e., capabilities, advantages, and limitations). The goal of verification is to prove through test, analysis, inspection, and/or demonstration that a product provides its required function while meeting the performance requirements. It is important that verification yield understanding of representative performance under worst-case conditions so that margins to failure can be evaluated for proposed applications. The capabilities, advantages, and limitations of the testing and inspection performed at each level are different, and the risk incurred by omitting a verification step depends on the level of integration as well as Mission, Environment, Application and Lifetime (MEAL). This paper focuses on verification processes. The goal of the verification process is to ensure the given avionics technology could be safely implemented on the given MEAL consistent with the program/project risk posture

    Radiation Performance of 1 Gbit DDR SDRAMs Fabricated in the 90 nm CMOS Technology Node

    Get PDF
    We present Single Event Effect (SEE) and Total Ionizing Dose (TID) data for 1 Gbit DDR SDRAMs (90 nm CMOS technology) as well as comparing this data with earlier technology nodes from the same manufacturer

    Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs

    Get PDF
    The relative importance of heavy-ion interaction with the oxide, charge ionized in the epilayer, and charge ionized in the drain substrate, on the bias for SEGR failure in vertical power MOSFETs is experimentally investigated. The results indicate that both the charge ionized in the epilayer and the ion atomic number are important parameters of SEGR failure. Implications on SEGR hardness assurance are discussed

    Recent Radiation Test Results for Trench Power MOSFETs

    Get PDF
    Single-event effect (SEE) radiation test results are presented for various trench-gate power MOSFETs. The heavy-ion response of the first (and only) radiation-hardened trench-gate power MOSFET is evaluated: the manufacturer SEE response curve is verified and importantly, no localized dosing effects are measured, distinguishing it from other, non-hardened trench-gate power MOSFETs. Evaluations are made of n-type commercial and both n- and p-type automotive grade trench-gate device using ions comparable to of those on the low linear energy transfer (LET) side of the iron knee of the galactic cosmic ray spectrum, to explore suitability of these parts for missions with higher risk tolerance and shorter duration, such as CubeSats. Part-to-part variability of SEE threshold suggests testing with larger sample sizes and applying more aggressive derating to avoid on-orbit failures. The n-type devices yielded expected localized dosing effects including when irradiated in an unbiased (0-V) configuration, adding to the challenge of inserting these parts into space flight missions

    Compendium of Current Single Event Effects for Candidate Spacecraft Electronics for NASA

    Get PDF
    NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is and adequate understanding of the test condition is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event transient (SET). For total ionizing dose (TID) and displacement damage dose (DDD) results, see a companion paper submitted to the 2015 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "compendium of Current Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA by M. Campola, et al
    corecore